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Abstract 

A careful but elementary derivation of the difference equations for the longi- 
tudinal degree of freedom of particle motion in a synchrotron is given. Very lit- 
tle approximation is required to obtain results which are suitable for numerical 
calculation and valid under general conditions. With simplifying approxima- 
tions and specializations, which can be excellent in typical circumstances, the 
amount of calculation per particle can be reduced sufficiently to make practical 
simulations with > 10’ particle-turns. The particular approximations used in 
several versions of the tracking program ESME are identified. 

Introduction 

There are several available treatments of the equations of motion for synchrotron 
oscillation, most of them directed toward deriving differential equations or a Hamil- 
tonian from which eneral properties can be inferred or tractable analytic approxi- 
mations derived.[ 15 1~ L It is generally conceded, however, that acceleration in a syn- 
chrotron is more accurately expressed by finite difference equations, the difference 
steps being the azimuthal or particle arrival time separation between localized rf 
gaps. For purposes of turn-by-turn trac,king of particle distributions in longitudinal 
phasespace, the difference equations are furthermore the more appropriate mathemat- 
ical framework because they translate directly into numerical operations. This note 
is motivated by an observation that there is more than one mapping used in tracking 
programs for longitudinal particle motion, ~~1~~1~~1 clearly different approximations are 
used in deriving these maps. When these programs give consistent results, as they 
generally do, the consistency must result from comparison in a regime where the var- 
ious approximations are valid. What follows is a careful but elementary derivation of 
the single-particle equations of motion for the longitudinal degree of freedom of beam 
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particles in a synchrotron. The results are useful as a basis for the simulation of the 
effect of rf parameter programs or multi-particle dynamics studies. r5] An attempt is 
made to identify approximations appropriate to various parameter regimes, but the 
emphasis is on avoiding approximations which limit the range of validity. 

A particle circulating in a synchrotron on an orbit of mean radius R. = C./2x 
has average angular velocity 

f-L = QJ& (1) 

where z), is the speed of the particle. Suppose for simplicity that there is a single 
accelerating gap. If the frequency and amplitude of the rf is set so that the particle 
receives whatever energy increment is required to keep R, fixed as the magnitude of 
the average vertical magnetic field (B,) h g c an es, then the particle is called a syn- 
chronous particle, the orbit it follows is the synchronous orbit, and its trajectory is a 
synchronous trajectory. Imagine looking at the output of a beam current pickup with 
an oscilloscope that has its time base triggered by the rf system. The signal from the 
synchronous particle is at a fixed location on the sweep turn after turn. The observed 
current pulse is the sum from signals of many particles with non-synchronous trajec- 
tories. In the conventional operating mode there will be a stable current pulse about 
the synchronous time over many beam turns; that is, the particle motion is such that 
trajectories near a synchronous trajectory at one time remain near it for long times. 
This stability results from so-called “phase focusing” which means that the slope of 
the rf waveform at the synchronous phase has the same sign as g, the change in 
circulation frequency with respect to particle energy. For a simple sinusoidal voltage 
waveform there are two phases per period at which the amplitude yields the correct 
energy increment. However, the slope of the waveform has opposite sign at these 
points. The term “synchronous phase” is generally reserved for the stable phase at 
which the slope of the waveform leads to phase focusing. If the rf system goes through 
h cycles during the particle circulation period, there are h synchronous trajectories.* 

Because in the typical circumstance particle trajectories are restricted to the neigh- 
borhood of a synchronous trajectory by phase focusing, it is convenient to write the 
equations for general trajectories in differences of energy and coordinate from a syn- 
chronous trajectory so that one has a conventional oscillatory system for the typical 
case of synchronous acceleration. However, there are other regimes of longitudinal 
motion of interest like, for example, the perturbed drifting motion in phase displace- 
ment acceleration. In this case the synchronous trajectory moves rapidly through the 
region of longitudinal phasespace occupied by beam particles and may start and end 
outside the physical aperture. Then the (hypothetical) synchronous particle is quite 
distinct from the beam particles, and, if the equations of motion are to be useful in 

‘Depending on hand the momentum aperture there may be also h- 1 faster moving synchronous 
partides and/or h + 1 slower moving onea, but this possibility is not usually realized in practice. 
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this case also, they must not depend on assumptions about small differences between 
the synchronous trajectory and the trajectories of beam particles. The derivation 
below retains the idea of synchronous particle and difference coordinates but avoids 
differential approximations for differences of quantities between the particle trajectory 
of interest and the synchronous trajectory. 

The definition of “synchrotron” generally includes a statement about the con- 
stancy of the reference or synchronous trajectory. In what follows this restriction will 
be considerably looser, allowing small changes in R. each turn and a synchronous 
orbit independent of the reference orbit to which the guide field properties are re- 
ferred. Furthermore, although the derivation is specialized to a single accelerating 
gap and a difference step of one circulation period to keep the notation simple, the 
generalizations to multiple gaps and shorter or longer time steps should be clear. 

Fundamental Equations in (t,E) Coordinates 

Consider the sequence of arrival times of the i-th particle at the one rf gap 
k,l,k,l,. . . 1 ti,n, where the end of the n-th turn is marked by the n-th crossing of 
the gap. There is a recursive relation 

ti,, = t+-1 + ci, 2 = ti,,-1 + 2 ) %,?I 
where C;,, is the length of the orbit for the i-th particle, R;,, is the average radius, 
and v+, is the average speed. Define finite differences AR and A,0 by 

&,n = (1 + AR/R.,&,, (3) 
Pi,n = (1 + AP/Ps,n)Ps,n (4) 

Then 
2xR.n 

ti,, = t&n-l + A X 
1 + AR/&, 

P .,nc 1 + APlAn 
= ti,m-1 + ~.,nSi,n 1 (5) 

where r.,, is the circulation period for the synchronous particle and the ratio 9, = 

%,nl fk.n may be called the “slip factor”. The slip factor is the fraction of a syn- 
chronous circulation period which the particle of interest gains or loses with respect 
to the synchronous particle per turn. At the end of a turn the particle receives an 
energy increment which depends, of course, on the voltage on the gap at that time 

Ei,, = &,,-I + eV(w.,nti,,) , (6) 

where the rf frequency w,,,, is hn,,, with h integral as required by the definition of a 
synchronous particle. Substituting for ti,, from eq. 5 one gets 

Ei,n = %-I + eV(wa,n[t;,n-1 + ~ap&,n]) = &,,-I + eV(wa,nk,n-1 + ZrhSi,n) . (7) 

3 



These equations can be read as a mapping M of a point (+I, J&+-1) to another 
point (t;+, E;,,) in the (t, E) pl ane. The equations are supposed to represent a con- 
servative process; thus, the mapping should conserve phasespace area. The Jacobian 
determinant is 

a(t,n, J&x) 1 
J(M) = 

&,&V 

E’(t+,, Ei,,-1) = .r’,na 1 + eV’2~%&& 
El. (8) 

Therefore, phasespace area is conserved and the sequence of ti,,,, E;,, for different n 
lie on a curve of constant H for some Hamiltonian H. The map M is in the form of 
an acceleration-free drift in which the coordinate t changes followed by an impulse in 
which only the conjugate momentum E changes. Forest @I points out that any map 
with these properties will be area preserving. It also represents an approximate, but 
exactly symplectic, integrator of a related continuous Hamiltonian system. In the 
present case, however, the related system is a continuous approximation to the real 
impulsive system. 

So far an idealized system has been treated essentially exact1 
P 

However, the 
system described is not a very exact model of a synchrotron. D6me[ 1 points out that 
to describe fully the longitudinal dynamics in a synchrotron one must consider the 
contribution to the force on the particle from the changing magnetic field, i. e., what 
is generally called betatron acceleration. This force acts continuously around the the 
machine. It is, however, small compared to the rf force. If one uses an impulsive 
approximation for the betatron acceleration one makes a small discretization error 
in a very small term. The actual expression will be written down in a later section, 
but from the general perspective emphasized here it seems clear that one is closer 
to reality making a discrete approximation for a small continuous force rather than 
smoothing the large impulsive rf force over the entire azimuth. 

Convenient Coordinates 

The difference equations eqs. 5 and 7 are based on comparing the circulation 
velocity of the i-th particle to the synchronous particle but nonetheless are written 
in coordinates of integrated circulation time and total energy. It is more natural to 
consider the difference in arrival times between the i-th and the synchronous particles: 

&I = ti,, - t.,, = t;,, - 5 
n--l 

7*,7n = kg-1 + TapSi,n - rap - C rap 
m=l m=l 

= &,,-1 + (Si,, - l)r.,, . (9) 
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The difference E+, between the energy of the i-th particle and the synchronous particle 
satisfies 

G,n = Q-1 + eV(ws,n[4,n + ts+]) - eV(w.,,t.,,) 
= 5,~1 + ev(wyadi,n + A,n) - eV(d.,,) , (10) 

where de,,, is the synchronous phase, k. e., the phase of the rf at the arrival time of 
the synchronous particle. 

The coordinate d is a reasonable one for calculations, but there are two angular 
variables that may be easier to interpret or incorporate into simulations including 
other processes like feedback etc. The rf phase at the time the particle crosses the 
gap is simply 

4&n = Wa,nti.n = wa.n(di,re + tap) = iOi,n + 48,” I (11) 

the quantity that appears already in the argument of the potential in the energy 
equation eq. 10. In these phase-energy coordinates the difference equations become 

Pi,m = k%,m-l + wa,7xTa,n( si,n - l) 
W.,,-1 

= ~iDi.n-1 + Znh(Sj,, - 1) (12) 

and 

G,n = G,n-1 + eV(W,n + 48,~~) - eV(48,n) . (13) 

The ratio of synchronous periods on successive turns appearing in eq. 12 is very 
nearly unity and is commonly ignored. It can be neglected without noticeable effect 
in applications for which R, is fixed and the range of the synchronous velocity is 
small, i. e., where the synchronous energy range is small or the synchronous energy 
is high. If these conditions do not hold, the phasespace area of a distribution will be 
observed to decrease N p;’ under repeated mapping. 

In one approach to analyzing the effect of the electromagnetic fields produced by 
the particle distribution on the motion of individual particles[7] the harmonics of the 
beam current are calculated from the spatial finite fourier transform of the charge 
distribution at a iixed time. The FFT is valid for a periodic function; the variable in 
which the charge distribution is periodic is the cyclic azimuthal variable 

@i,n = [&n&n + r.]mod 1~ - K (-r 5. @i,a I r) Y (14) 

where for convenience 0 = 0 is taken as the location of the rf gap. Note that, 
according to the definition of S;,, and eq. 14, Oi,, is less than O;,,-l when the i-th 
particle is traveling faster than the synchronous particle; thus, the particles travel in 
the -0 sense. This definition is not entirely conventional, but it is convenient. If 
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it is desired to have the particles circulate in the $0 sense, equation eq. 14 should 
include a minus sign. The slip equation eq. 5 becomes 

@i,, = $% + Z7+(S;,, - 1) = &o;,“-1 + Zx(l - P) (15) 
*,n 1 +n 

and the energy equation becomes 

+I = E;,~-~ + eV(w,,,[d;,, + ts,J) - eV(w.,,t,,,) 

= G,,-I + eV(h&,“@+ + &) - eV(d.+) (16) 

These equations are quite complicated; the slip factor enters in both, and, worse 
by far, the 0 equation requires knowing the i-th particle velocity on two successive 
turns - a significant burden in a large multi-particle calculation. These are the 
equations that have been used in versions 6, 6.05, 6.5, and ‘7.0 of the tracking program 
ESME with the simplifying approximation Cl~,/62;,,-~ = 1 for the 0 equation.13] The 
most pronounced effect of this approximation is the p;’ shrinkage of the phasespace 
area like that which was described for the similar approximation commonly applied 
to eq. 12. In version 7.0 this effect was corrected ad hoc by introducing the ratio 
r.,,-I/T,,,, into the energy difference equation. The correction was effective, but it is 
not consistent with the exact map eqs. 15 and 16. 

It would be useful for multi-particle dynamics simulations, where the accuracy 
may be affected far more by statistical fluctuation in the distribution than by small 
terms in the single particle dynamics, to have a simpler map to reduce computing time 
per particle. The time-energy map is very simple; one may try to get a comparably 
simple angle-energy map by defining a different angular variable which would have 
the same qualitative interpretation as 0, that is, would differ from it by an amount 
negligible for many purposes. If one defines 

&,n = Si,n@i,n , 

the difference equations eqs. 15 and 16 simplify to 

&i,n = y&,,-1 + Z?r(Si,, - 1) (18) 

G,n = ~i,n:l + eV(h&,n + q&J - eV(&,) . (19) 

By comparing this map to eqs. 12 and 13 one sees that 

gi,n = ~+lh . (20) 

Thus, one has a nearly circular development. However, a little something has been 
exposed in the process. From it one sees explicitly the generally ignored distinc- 
tion between the azimuthal coordinate and the phase coordinate for beam particles. 
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Clearly, to know the phase the rf will have when a particular particle reaches the 
gap one must know not only the azimuth of the particle but also its velocity. The 
velocity information is contained in the slip factor Si,,; setting it to one is making the 
approximation that all particles have the synchronous velocity. On the other hand, 
it is true that for many purposes the distinction can be ignored because 

9, = 
1 + AR/R,,, = 1+ +P/P,, 

1 + API&x 1 + r;Y~l~.,n 

AP 
Fz 1+q-> 

P.,n 
(21) 

where as usual n = 7;’ - 7,;:. In the present version of ESME (version 7.1)[*1 the 
choice has been made to use the precise map eqs. 18 and 19 but not to distinguish 
between 9 and 0 when constructing the fourier series for the charge distribution. This 
approximation is the same as the one used in converting the charge distribution into 
a current distribution by multiplying throughout by vu.. For the transient analysis 
of the interaction of the beam current with a high-Q resonator, I31 the 9;,, (or d+,) 
distribution is exactly what is wanted. In versions of ESME before v. 6, eqs. 18 and 
19 were used with the approximation of r,,,-r/r,,, = 1.1’1 

If one applies the approximation eq. 21 to the difference equations eqs. 12 and 13 or 
18 and 19 and in addition approximates r,,,-l/r,,, by one, all non-linear dependence 
on the coordinates is removed except for that in the potential, resulting in a simple 
mapping which can be used to advantage in large scale tracking calculations or even 
with a hand calculator if desired: 

2ahq 
%.n = (Pi,*-1 + p:E.Si,n-1 

Ei,n = %x-l + eV(Pi,, + rj5.+) - eV(qS,+) . 

(22) 

(23) 

This simple pair is adequate for a large majority of typical tracking calculations where 
the basic purpose is to study effects of different potentials. The kinds of situation 
where one should be wary of using it uncritically include near transition energy where 
first order terms in Si,” cancel, at low energies where the range of velocities in the 
distribution is more significant, with atypical distributions having large momentum 
spread or mean energy far from E,, and in long multi-turn simulations where p, 
changes appreciably. 

Probably it has not escaped the reader’s notice that in going from the (t, E) map 
eqs. 5 and 6 to the (+D, s) map eqs. 12 and 13 the coordinates are no longer a canonical 
pair. The equations are still valid of course, but one must convert the Ap - AE 
phasespace area to energy-time units to compare results at different E,. Because the 
‘p - E units are very physical and it is straightforward to convert the phasespace 
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area, the author has always used E with the 0, 9, or ‘p variables for application to 
tracking calculations. However, for the purposes of analysis or further development 
of the equations of motion it may be useful to have an area-preserving map. With 
the substitutions 

Pi,” = e+&,, 

%,” = Ei,n/Wa,n 

into the eqs. 9 and 10 one arrives at the map M: 

%Jl = *pi,.-1 + Zah( si,, - 1) 

ei,n 
w.,*-1 

= -eip-1 + &P(Pi’” + 4.J - V(4s,n)l . 

The Jacobian is 

W.,” 

J(M) = a(%,“, %,n) 

a($%.*-19 e&n-l) = 

as desired. 

0 t her Basics 

% 
w,,n--L &t?V’ 

2nh -Ck + + -&Vf2*h~ Be;,“-1 , 
Zl (28) 

(24) 

(25) 

(26) 

(27) 

The principal concern in this note has been to write down the basic map in a 
precise form. However, there are other matters that may be fundamental to accurate 
modeling of a real synchrotron. In this section the effect of several cavities, longitu- 
dinal spacecharge force, and bet&on acceleration are considered. The last of these 
has conceptual importance even if it is to be ignored in practice because considerable 
emphasis has been placed on precision in the basic map, but it does not include an 
effect which is present whenever there is changing magnetic field. 

If N cavities are equally spaced about the ring, have the same voltage, and are 
phased to have the same phase for the synchronous particle, the effect is represented 
by mapping each turn with N applications of the map with l/N of the total voltage 
and l/N of the phase slip in each iteration. One can see that in principle it is possible 
to treat an arbitrary spacing of cavities with differing dispersion between them by 
representing each of the sections with different coefficients in the difference equations. 
Simply because the accelerator being modeled has more than one rf gap does not 
mean, of course, that one should necessarily use multiple maps per turn. The phase 
slip between gaps is usually very small so that the approximation of one per turn is 
generally excellent. Because the differential equation, which in some sense corresponds 
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to an infinite number of gaps per turn, generally gives results consistent with the one- 
turn map, one will map more than once per turn only in unusual circumstances. The 
small amplitude synchrotron tune is a measure of the phase slip per turn; if it exceeds 
O(10e2), a mapping step of one turn is rather coarse, and it could be important to 
represent more accurately the actual distribution of the cavities. 

Just as the circumference can be subdivided by multiple cavities, the drift can be 
broken into as many segments as the adequate discrete approximation to any con- 
tinuously distributed force may require. In particular, when one evaluates the effect 
of beam spacecharge in high intensity and/or low energy accelerators, it may not 
be adequate to approximate the force with a single kick per turn. Koscielniak has 
found141 spurious clumping and breakup of the distribution when the integration step 
for the spacecharge force is too large. However, the drift equation can be applied 
separately for each of the requisite number of segments with spacecharge kicks inter- 
spersed. When going to small fractions of a turn it may be efficient to apply the small 
correction r,,,-1/7.S, only at the end of a turn or perhaps at the end of an inter-cavity 
segment. Techniques for finding the spacecharge forces from the particle distribution 
are discussed elsewhere.[31s[71 

The betatron acceleration per turn is 

6E@) = --e 
! 

I& db’dT , (29) 

where the polar cylindrical coordinates have their origin at the center of the ring and 
the integration over T includes all of the area inside the orbit in which there is changing 
flux. The change in total energy is very small in most synchrotrons, and, as far as the 
synchronous particle is concerned, its effect is simply to reduce slightly the magnitude 
of the synchronous phase. That is, the zero-th order effect of the bet&on acceleration 
is accounted for by, so to speak, renormalizing the synchronous phase so that rf 
acceleration substitutes for the missing bet&on contribution. However, there is a 
differential acceleration which changes the equations of motion in a more fundamental 
way; viz., particles with higher momentum are accelerated more than particles with 
lower momentum independently of their phase because the higher momentum orbit 
always encloses more flux. Assume that that d,,,, is adjusted to account for the 
acceleration of the synchronous particle. The difference in betatron acceleration for 
the Gth particle and the synchronous particle is 

A@ zz 
*,n 

-e .8z(Ti,n - T.,,) dr d6 

N -=pi)(Ri,, - JLJ$~R.,, (30) 

(31) 

Because 

P. = -e(Bz)R. 
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one can write 
A@ = 2~~.,,(Ri,n - R.,,) . (32) 

Because the synchronous phase has been adjusted to include the bet&on acceleration 
of the synchronous particle 

2aR.,,P.,, = eV(&J . 

Thus, by replacing R+ - R,,, with cu,R.,,Ap/p,,,, one can write 

(33) 

A,@) = 274~~ *,n P R 

The betatron acceleration term is small, but not obviously negligible with respect to 
kinematic terms that received careful attention above. Nonetheless, the approxima- 
tions made in evaluating A&?‘) are more than adequate for synchrotrons. By the 
convention that the rf kick ma% the end of a turn one has for the augmented energy 
equation 

ei,n=ei,,-l+eV(hSi,,+~.,,)- (l-~,~~;~)eV(+8,n) . 

However, there is an argument based on the differential equations of longitudinal 
motion[l] which shows the added term less important than one might assume from 
eq. 35. If the rf acceleration is smoothed over the entire circumference, the differential 
betatron acceleration between the synchronous and the other particles can also be 
represented by changing d.,, by a small amount, but there appears to be no analogous 
argument that one can frame using the difference equations only. So, in principle, 
and conceivably in practice for special circumstances, one should keep in mind the 
possibility of significant effect from betatron acceleration. However, if the accelera- 
tion is sufficiently gentle that the single-turn map and the differential equation give 
effectively identical results, one is always justified in neglecting an explicit bet&on 
contribution. 

Conclusion 

The foregoing discussion of the finite difference equations for single particle motion 
in longitudinal phasespace coordinates has been aimed at identifying appropriate 
maps for use in particle tracking programs for studies of both rf parameter programs 
and multi-particle beam dynamics. The choice that has been made for ESME (v. 
7.1) is the set of eqs. 18 and 19 which ignores what has been called the differential 
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betatron acceleration entirely. The program also ignores the distinction between the 
truly azimuthal variable 0 and the phase related variable 9. This differs from a choice 
in earlier versions that employed 0 but took the ratio &,/Sl,,-1 to be identically one. 
The most noticeable effect of that approximation is that the longitudinal emittance 
shrank with increasing particle velocity. This presented no problem for the Fermilab 
accelerators for which the code was being employed, but certainly can be noticeable 
in many-turn tracking in lower energy accelerators. Figure 1 shows the the rms 
emittance of an 0.15 eVs bunch accelerated from 2 MeV to 208 MeV in a machine 
with the basic parameters of the Loma Linda medical accelerator. The tracking is 
for 2.33 x 10s turns using the difference equations of version 7.1 of ESME. Figure 2 
shows a comparable run using version 6.5. The fluctuations in emittance result from 
the statistical fluctuation produced using a roughly matched initial distribution of 
only 143 particles. The initial distribution was enclosed in a matched contour but 
the density was not constructed to reflect the dependence of the particle velocity on 
phasespace coordinates.2 
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Check Constancy of Emittonce with Energy 
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Figure 1: RMS emittance tracked from 2 to 208 MeV for 143 particles using eqs. 18 
and 19 in v. 7.1 of ESME 
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Check Constancy of Emittonce with Energy 
EPSILON vs T&ME 
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Figure 2: RMS emittance tracked from 2 to 208 MeV for 143 particles using eqs. 15 

and 16 in v. 6.5 of ESME 
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